Трансмиссия с управляемым вектором тяги

Полноприводные версии Nissan Juke оснащаются одной из самых продвинутых на сегодняшний день трансмиссий с управляемым вектором тяги. Вместо заднего межколесного дифференциала применяются две многодисковые муфты, управляемые компьютером. В случае необходимости система All Mode 4x4-i может направить до 50% крутящего момента двигателя на каждое из задних колес, буквально «заправляя» машину в поворот.

Трансмиссия Nissan Juke All Mode 4x4-i с управляемым вектором тяги

Чтобы принять решение о распределении тяги, компьютер сравнивает скорость и направление движения, указанные водителем, с реальной траекторией движения. О желаниях водителя системе сообщают датчик угла поворота рулевого колеса и датчик положения педали газа. Информация о реальной траектории движения поступает с датчиков скорости вращения колес и датчика угловых ускорений.


Первые электронные блоки управления двигателем (ECU), появившиеся в 1980-х годах, принимали аналоговый сигнал датчика положения дроссельной заслонки и находили соответствующие выходные данные в таблице, заранее записанной в память. Датчик тогда представлял собой обычный потенциометр, или переменный резистор. Дроссельная заслонка соединялась с контактным ползунком, который перемещался по проводящей дорожке с определенным сопротивлением. От длины дорожки между ползунком и вторым контактом зависело сопротивление резистора, в соответствии с которым ECU определял параметры работы двигателя.


Очевидный недостаток переменного резистора – контактный принцип работы и, соответственно, трение. Со временем проводящая дорожка и ползунок истирались, и датчик приходил в негодность. Полностью цифровые ECU, обрабатывающие множество входных параметров в реальном времени, без помощи заранее записанных в память таблиц, потребовали принципиально иной точности инадежности измерений. Пришло время магнитных датчиков.


Датчик Холла основан на принципе, который в упрощенном виде можно описать так. Представим себе, что через металлический брус, помещенный в магнитное поле, течет электрический ток (это напряжение питания датчика). Магнитное поле отклоняет электроны от линии движения вдоль электрического поля к одной из граней бруса. В результате на боковых гранях появляется напряжение, величина которого зависит от силы магнитного поля. Если закрепить на валу дроссельной заслонки постоянный магнит, значение напряжения на чувствительном элементе датчика Холла будет точно определять ее текущее положение.

В 1856 году Уильям Томпсон обнаружил, что электрическое сопротивление материалов может изменяться в магнитном поле. Анизотропное магнетосопротивление предполагает, что сопротивление меняется в зависимости от направления магнитного поля. На этом принципе основана работа самых современных угловых датчиков – AMR-сенсоров.


Сопротивление в опытах Томпсона менялось едва заметно. В современных сенсорах применяются ферромагнитные проводники. Их магнитные свойства также меняются в зависимости от направления внешнего поля, что усиливает эффект. Помогают и технологические ухищрения: тонкую пленку ферромагнетика (10–50 нм) покрывают сетью тончайших полосок проводников, чтобы придать электрическому полю внутри чувствительного элемента нужное направление. Четыре чувствительных элемента в одном датчике объединяются в мост и работают сообща, и все равно их общее сопротивление между положениями «ноль» и «газ в пол» изменяется всего на 3–4%.


Тем не менее этого AMR-сенсорам хватает, чтобы превзойти датчики Холла и по чувствительности, и по разрешению, и по точности. Эти бесконтактные сенсоры чрезвычайно надежны и достаточно дешевы при массовом производстве. Они идеально подходят на роль датчиков поворота руля и положения педали газа.


Чтобы узнать, как ведет себя автомобиль на самом деле, компьютер считывает показания датчиков скорости вращения колес (они же датчики ABS) и датчика угловой скорости. Датчики ABS представляют собой простейшие датчики Холла. На каждую полуось устанавливается зубчатое колесо. Когда зубец проходит мимо датчика, последний реагирует на небольшое изменение магнитного поля и посылает в компьютер импульс. По частоте таких импульсов система точно определяет скорость вращения каждого колеса, мгновенно фиксируя пробуксовку и блокировку.


Датчик угловой скорости представляет собой вибрационный гироскоп. Его активный элемент напоминает два камертона с общей рукояткой. Он сделан из кристаллического кварца, поэтому, когда на одну пару зубцов подается напряжение, элемент вибрирует с заданной частотой. Когда «камертоны» поворачиваются вместе савтомобилем, на них начинает действовать сила Кориолиса, изгибающая зубцы. Благодаря пьезоэлектрическому эффекту на второй паре зубцов возникает напряжение, величина которого зависит от скорости вращения автомобиля.


Желаемая траектория



Угловые датчики, основанные на эффекте Холла или магнетосопротивлении, дают компьютеру информацию о положении педали газа и рулевого колеса.


Действительная траектория


Датчики угловой скорости И ABS дают информацию о реальной траектории движения автомобиля, а также о пробуксовке или блокировке колес.



Гибридный синергетический привод

Гибри́дный синергети́ческий при́вод (англ. Hybrid Synergy Drive, HSD; произносится [ха́йбрид си́неджи драйв]) — технология силовой установки автомобиля, основанная на синергетическом эффекте, разработанная японской корпорацией «Toyota».
Гибридный автомобиль


Гибридный синергетический привод

Объединяет 5 основных компонентов:


  • бензиновый двигатель 1NZ-FXE (с изменяемыми фазами газораспределения, цикл Аткинсона, сжатие 13:1), соединён с коробкой планетарной передачей
  • электродвигатель (синхронный, постоянный магнит), соединён с короной
  • электрогенератор, соединён с солнцем
  • планетарная передача и электронный вариатор
  • аккумуляторная батарея (рассчитана на весь срок службы автомобиля) и инвертор (преобразует постоянный ток в переменный)

Комплекс управляется компьютером по концепции drive-by-wire (без прямого механического контакта)


Фазы работы синергетического привода


На скорости выше средней бензиновый двигатель передаёт часть энергии (через водило и корону планетарной передачи) непосредственно на передние колеса, оставшаяся часть (через водило и солнечную шестерню) идет на электрогенератор. От генератора часть тока ответвляется на подзарядку батареи, а часть возвращается (через инвертор 500 В) на тяговый электромотор, который вращает передние колеса через коронную шестерню.


При обгоне (максимальном ускорении) компьютер прекращает подзарядку батареи и направляет весь ток от генератора на электромотор. Кроме того, ток от батареи через инвертор также поступает на электромотор.


При торможении компьютер выключает бензиновый двигатель, а электродвигатель переключается в режим генерации тока и возвращает энергию в батарею (рекуперация).


На малой скорости (до 50 км/ч) автомобиль работает в режиме электромобиля, получая энергию только от батареи.


Фактически, силовая установка автомобиля разбита на два модуля — электрическая подсистема отвечает за работу на переходных и установившихся режимах, подсистема внутреннего сгорания — только за работу на установившихся режимах. Такой подход кардинально меняет требования к двигателю внутреннего сгорания и целевые функции конструкторов при разработке всей силовой установки автомобиля, а не только одной трансмиссии, как, например, в опытной разработке General Motors, DaimlerChrysler AG и BMW « Two-Mode», которая предназначена для гибридизации стандартных бензиновых или дизельных двигателей старых конструкций, разработанных без учета работы в составе гибридного агрегата.



Автомобильные новости про: гибридный синергетический привод, синергетический эффект, гибридизация, гибрид, современные автомобильные разработки, автомобильные технологии.



Автомобили на альтернативном топливе

Альтернативные виды топлива, гибридные автомобили
Современные автомобильные технологии


Автомобили на альтернативном топливе

Автомобили на альтернативном топливе - это такие авто, которые работают на любом топливе, кроме "традиционных" нефтяных видов топлива (бензин или дизельное топливо), а также если система питания двигателя не предполагает исключительно нефть (например, электрический автомобиль, гибридные электрические транспортные средства, на солнечных батареях). Из-за сочетания ряда факторов, таких, как экологические проблемы и высокие цены на нефть, развитие более чистых альтернативных видов топлива и передовых энергетических систем для транспортных средств стало важным приоритетом для правительств многих стран и производителей автомобилей по всему миру.


Гибридные электромобили, такие как Toyota Prius на самом деле не являются автомобилями на альтернативном топливе, но за счет использования современных технологий в электрической батарее и моторе/генераторе, они делают использование нефтяного топлива более эффективным. В дргих исследованиях и разработках альтернативных методов получения энергии сосредотачиваются на разработке полностью электрического и автомобиля на топливных элементах, а также энергии сжатого воздуха.


По состоянию на 2010 во всем мире использовалось около одного миллиарда транспортных средств. Для сравнения, по состоянию на середину 2011 года, по всему миру было продано 47 миллионов транспортных средств на альтернативном топливе и передовых технологиях. Среди них:

  • 25100000 flexible-fuel (по данным на июнь 2011 года): лидирует Бразилия с 14,3 млн., за ними США с почти 10 миллионами, Канада (600 000), и в Европа, с лидером Швецией (226 089).
  • 12700000 на природном газе (по данным на декабрь 2010 года): лидирует Пакистан с 2,7 млн., Иран (1,95 млн.), Аргентина (1,9 млн.), Бразилия (1,7 млн.) и Индия (1,1 млн.).
  • От 2,4 до 3,0 миллиона транспортных средств на этаноле до сих пор используется в Бразилии из 5,7 млн., произведенных с 1979 года.
  • Более чем 3,4 миллиона гибридных электрических транспортных средств, проданных к середине 2011 года: лидирует США с более чем 2,0 млн. единиц, далее Япония с более чем 1,1 млн. и Европе около 250 тысяч штук. Во всем мире Toyota Motor Company является лидером с 3,0 млн проданных гибридов до февраля 2011 года.
  • Меньше чем 100.000 plug-in электрических автомобилей, проданных к середине 2011 года, среди которых лидируют с низкой скоростью и местные электрических транспортных средств (NEVs) с более чем 45000 штук, проданных по глобальной Global Electric Motorcars (GEM); более чем 20000 электромобилей, среди которых лидирует Nissan Leaf с более чем 10 000 штук, проданных по всему миру к концу июля 2011 года, за ним Mitsubishi MiEV я с более чем 5000 штук, REVAi с более чем 4000 штук, Tesla Roadster с более чем 1500 штук, и Th!nk City с более чем 1000 штук; и около 4000 гибридов, во главе с Chevrolet Volt с более чем 3000 штук и BYD F3DM с почти 500 штук.


Автомобильные новости про: электромобиль,flexible-fuel, альтернативное топливо, природный газ.





Переход: 18 19 20 21 22 23 24 25 26 27
Перескок: 10 20